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Systems of Linear Equations and 

Matrices 



• Why matrices? 

– Information in science and mathematics is often 
organized into rows and columns to form regular 
arrays, called matrices. 

• What are matrices? 

– tables of numerical data that arise from physical 
observations 

• Why should we need to learn matrices? 

– because computers are well suited for manipulating 
arrays of numerical information 

– besides, matrices are mathematical objects in their 
own right, and there is a rich and important theory 
associated with them that has a wide variety of 
applications 

Introduction 



Introduction to Systems of Linear Equations  
• Linear Equations 

– Any straight line in the xy-plane can be represented 
algebraically by the equation of the form 

 

 an equation of this form is called a linear equation in the 
variables of x and y. 

– generalization: linear equation in n variables 

 

– the variables in a linear equation are sometimes called 
unknowns 

– examples of linear equations 

 

– examples of non-linear equations 
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Introduction to Systems of Linear Equations  
 

• Solution of a Linear Equation 
– A solution of a linear equation a1x1+a2x2+...+anxn=b is a 

sequence of n numbers s1, s2,...,sn such that the equation is 
satisfied when we substitute x1=s1, x2=s2,...,xn=sn. 

• Solution Set 
– The set of solutions of the equation is called its solution set, or 

general solution. 

– Example:  

 Find the solution set of (a) 4x-2y=1, and (b) x1-4x2+7x3=5. 

• Linear Systems 
– A finite set of linear equations in the variables x1, x2,...,xn is 

called a system of linear equations or a linear system. 

– A sequence of numbers s1, s2,...,sn is a solution of the system 
if x1=s1, x2=s2,...,xn=sn is a solution of every equation in the 
system. 



Introduction to Systems of Linear Equations  
– Not all linear systems have solutions. 

– A linear system that has no solutions is said to be 
inconsistent; if there is at least one solution of the system, 
it is called consistent. 

– Every system of linear equations has either no solutions, 
exactly one solution, or infinitely many solutions. 

– An arbitrary system of m linear equations in n unknown 
can be written as 
 

 

 

 

– The double subscripting of the unknown is a useful device 
that is used to specify the location of the coefficients in 
the system. 
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Introduction to Systems of Linear Equations  
• Augmented Matrices 

– A system of m linear equations in n unknown can be 
abbreviated by writing only the rectangle array of numbers: 

 

 

 

 

 This is called the augmented matrix of the system. 

 

– The basic method for solving a system of linear equations is to 
replace the given system by a new system that has the same 
solution set but which is easier to solve. 

1. Multiply an equation through by a nonlinear constant 

2. Interchange two equations. 

3. Add a multiple of one equation to another. 
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Introduction to Systems of Linear Equations  

• Elementary Row Operations 

– Since the rows of an augmented matrix 

correspond to the equations in the associated 

system, the three operations above 

correspond to the following elementary row 
operations on the rows of the augmented 

matrix: 

1. Multiply a row through by a nonzero 

constant. 

2. Interchange two rows. 

3. Add a multiple of one row to another row. 

– Example: Using elementary row operations to 

solve the linear system 
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Gaussian Elimination 

• Echelon Forms 
– A matrix with the following properties is in reduced row-

echelon form: 

1. If a row does not consist entirely of zeros, then the first 
nonzero number in the row is 1. We call this a leading 1. 

2. If there are any rows that consist entirely of zeros, then 
they are grouped together at the bottom of the matrix. 

3. In any two successive rows that do not consist entirely of 
zeros, the leading 1 in the lower row occurs farther to the 
right than the leading 1 in the higher row. 

4. Each column that contains a leading 1 has zeros 
everywhere else. 

– A matrix that has the first three properties is said to be in 
row-echelon form. 

– Example 1 
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Gaussian Elimination 
– A matrix in row-echelon form has zeros below each 

leading 1, whereas a matrix in reduced row-echelon form 

has zeros below and above each leading 1. 

– The solution of a linear system may be easily obtained by 

transforming its augmented matrix to reduced row-

echelon form. 

– Example: Solutions of Four Linear Systems 

 

 

 

 

 

 

 
– leading variables vs. free variables 
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Gaussian Elimination 

• Elimination Methods 
– to reduce any matrix to its reduced row-echelon form 

1. Locate the leftmost column that does not consist entirely of zeros. 
2. Interchange the top row with another row, if necessary, to bring a 

nonzero entry to the top of the column found in Step 1. 
3. If the entry that is now at the top of the column found in Step 1 is a, 

multiply the first row by 1/a in order to produce a leading 1. 
4. Add suitable multiples of the top row to the rows below so that all 

entries below the leading 1 become zeros. 
5. Now cover the top row in the matrix and begin again with Step 1 

applied to the submatrix that remains. Continue in this way until the 
entire matrix is in row-echelon form. 

6. Beginning with the last nonzero row and working upward, add 
suitable multiples of each row to the rows above to introduce zeros 
above the leading 1’s. 

– The first five steps produce a row-echelon form and is called Gaussian 
elimination. All six steps produce a reduced row-echelon form and is 
called Gauss-Jordan elimination. 



Gaussian Elimination 
– Example: Gauss-Jordan Elimination 

Solve by Gauss-Jordan elimination. 

 

 

 

 

 

• Back-Substitution 

– to solve a linear system from its row-echelon form rather than 

reduced row-echelon form 

1. Solve the equations for the leading variables. 

2. Beginning with the bottom equation and working upward, 

successively substitute each equation into all the 

equations above it. 

3. Assign arbitrary values to the free variables, if any. 

Such arbitrary values are often called parameters. 
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Gaussian Elimination 
–Example: Gaussian Elimination 

Solve 

 

 

 

 

 

 

by Gaussian elimination and back-substitution. 
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• Homogeneous Linear Systems 
– A system of linear equations is said to be 

homogeneous if the constant terms are all 

zero. 

– Every homogeneous system is consistent, 

since all system have x1=0, x2=0,...,xn=0 as a 

solution. This solution is called the trivial 
solution; if there are other solutions, they 

are called nontrivial solutions. 

– A homogeneous system has either only the 

trivial solution, or has infinitely many 

solutions. 

 



Gaussian Elimination 
Example: Gauss-Jordan Elimination Solve the following 
homogeneous system of linear equations by using Gauss-
Jordan Elimination. 
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The augmented matrix for the system is 

Reducing this matrix to reduced  roe-

echelon form, we obtain 
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Gaussian Elimination 

Solving for the leading variables yields 
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Note that the trivial solution is obtained when s=t=0 



Matrices and Matrix Operations 

• Matrix Notation and Terminology 

– A matrix is a rectangular array of numbers. The 
numbers in the array are called the entries in the 
matrix. 

• Examples: 

 

 

– The size of a matrix is described in terms of the 
number of rows and columns it contains. 

• Example: The sizes of above matrices are 32, 
14, 33, 21, and 11, respectively. 

– A matrix with only one column is called a column 
matrix(or a column vector), and a matrix with only one 
row is called a row matrix (or a row vector). 

– When discussing matrices, it is common to refer to 
numerical quantities as scalars. 
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– We often use capital letters to denote matrices and 
lowercase letters to denote numerical quantities. 

– The entries that occurs in row i and column j of a matrix 
A will be denoted by aij or (A)ij. 

• A general mn matrix might be written as 

 

 

 

 

• or [aij]mn or [aij]. 

– Row and column matrices are denoted by boldface 
lowercase letters. 

Matrices and Matrix Operations 
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– A matrix A with n rows and n columns is called a 

square matrix of order n, and entries a11, a22,...,ann are 

said to be on the main diagonal of A. 

• Operations on Matrices 

– Definition: Two matrices are defined to be equal if 
they have the same size and their corresponding 

entries are equal. 

– Definition: If A and B are matrices of the same size, 

then the sum A+B is the matrix obtained by adding 

the entries of B to the corresponding entries of A, 

and the difference A-B is the matrix obtained by 

subtracting the entries of B from the corresponding 

entries of A. Matrices of different sizes cannot be 

added or subtracted. 

 

Matrices and Matrix Operations 
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– Definition: If A is any matrix and c is any scalar, 
then the product cA is the matrix obtained by 
multiplying each entry of the matrix A by c. The 
matrix cA is said to be a scalar multiple of A. 

– If A1, A2,...,An are matrices of the same size and 
c1, c2,...,cn are scalars, then an expression of 
the form 

 

 is called a linear combination of A1, A2,...,An with 
coefficients c1, c2,...,cn. 

– Definition: If A is an mr matrix and B is an rn 
matrix, then the product AB is the mn matrix 
whose entries are determined as follows. To 
find the entry in row i and column j of AB, 
single out row i from the matrix A and column j 
from the matrix B, Multiply the corresponding 
entries from the row and column together and 
then add up the resulting products. 

Matrices and Matrix Operations 
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– Example: Multiplying Matrices 

 

 

 

– The number of columns of the first factor A must be 

the same as the number of rows of the second factor 

B in order to form the product AB. 

• Example: A: 3x4, B: 4x7, C: 7x3, then AB, BC, CA 

are defined, AC, CB, BA are undefined. 

• Partitioned Matrices 

– A matrix can be subdivided or partitioned into smaller 

matrices by inserting horizontal and vertical rules 

between selected rows and columns. 
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• Matrix Multiplication by Columns and by Rows 

– to find a particular row or column of a matrix product AB 

• jth column matrix of AB = A[jth column matrix of B] 

• ith row matrix of AB = [ith row matrix of A]B 

– Example: find the secoand column matrix of AB 

 

 

 

 

– If a1, a2,...,am denote the row matrices of A and b1, b2,...,bn 

denote the column matrices of B, then 

Matrices and Matrix Operations 
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• Matrix Products as Linear Combinations 

– Suppose that 

 

 

 

 Then 

 

 

 

 

 

– The product Ax of a matrix A with a column matrix x is a linear combination 
of the column matrices of A with the coefficients coming from the matrix x. 

Matrices and Matrix Operations 
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– The product yA of a 1m matrix y with an mn matrix A is 

a linear combination of the row matrices of A with scalar 

coefficients coming from y. 

• Example: Find Ax and yA. 

 

 

 

 

– The jth column matrix of a product AB is a linear 

combination of the column matrices of A with the 

coefficients coming from the jth column of B. 

• Example:  

Matrices and Matrix Operations 
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• Matrix Form of a Linear System 

– Consider any system of m linear equations in n unknowns. 

 

 

 

 

 

 We can replace the m equations in the system by the single matrix 
equation 

 

 

 

 

                

    Ax=b 

Matrices and Matrix Operations 
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– A is called the coefficient matrix. 

– The augmented matrix of this system is 

 

 

 

 

• Transpose of a Matrix 

– Definition: If A is any mn matrix, then the transpose of A, denoted 

by AT, is defined to be the nm matrix that results from 

interchanging the rows and columns of A. 

• Example: Find the transposes of the following matrices. 
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– (AT)ij = (A)ji 

– Definition: If A is a square matrix, then the trace 
of A, denoted by tr(A), is defined to be the sum 

of the entries on the main diagonal of A. The 

trace of A is undefined if A is not a square 

matrix. 

• Example: Find the traces of the following 

matrices. 

Matrices and Matrix Operations 
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Tr(A)= a11+a22+a33  



Inverses: Rules of Matrix Arithmetic 

• Properties of Matrix Operations 
– Commutative law for scalars is not necessarily true. 

1. when AB is defined by BA is undefined 

2. when AB and BA have different sizes 

3. It is still possible that AB is not equal to BA even when 1 and 2 holds. 

• Example: 

 
• Laws that still hold in matrix arithmetic 

(a) A+B=B+A   (Commutative law for addition) 

(b) A+(B+C)=(A+B)+C  (Associative law for addition) 

(c) A(BC)=(AB)C  (Associative law for multiplication) 

(d) A(B+C)=AB+AC  (Left distributive law) 

(e) (B+C)A=BA+CA  (Right distributive law) 

(f) A(B-C)=AB-AC  (j) (a+b)C=aC+bC 

(g) (B-C)A=BA-CA   (k) (a-b)C=aC-bC 

(h) a(B+C)=aB+aC  (l) a(bC)=(ab)C 

(i) a(B-C)=aB-aC  (m) a(BC)=(aB)C=B(aC) 


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• Zero Matrices 
– A matrix, all of whose entries are zero, is called a zero matrix. 

– A zero matrix is denoted by 0 or 0mn. A zero matrix with one column 
is denoted by 0. 

– The cancellation law does not necessarily hold in matrix operation. 

– Valid rules in matrix arithmetic for zero matrix. 

(a) A+0 = 0+A = A 

(b) A-A = 0 

(c) 0-A = -A 

(d) A0 = 0; 0A = 0 

• Identity Matrices 

– square matrices with 1’s on the main diagonal and 0’s off the main 
diagonal are called identity matrices and is denoted by I 

Inverses: Rules of Matrix Arithmetic 



• Properties of Inverses 

– Theorem: If B and C are both inverses of the matrix A, 
then B=C. 

– If A is invertible, then its inverse will be denoted by A-1. 

– AA-1=I and A-1A=I 

– Theorem: The matrix 

 

 
 is invertible if ad-bc0, in which case the inverse is given 

by the formula 

Inverses: Rules of Matrix Arithmetic 
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– Theorem: If A and B are invertible matrices of the 

same size, then AB is invertible and (AB)-1 = B-1A-1. 

• Generalization: The product of any number of invertible 

matrices is invertible, and the inverse of the product is the 

product of the inverse in the reverse order. 

• Example: Inverse of a product 

 

 

• Powers of a Matrix 

– Definition: If A is a square matrix, then we define the 

nonnegative integer powers of A to be 

  

 Moreover, if A is invertible, then we define the nonnegative 

integer powers to be 

 

Inverses: Rules of Matrix Arithmetic 
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Example:  



– Theorem: (Laws of Exponents) If A is a square matrix and 

r and s are integers, then 

 

– Theorem: If A is an invertible matrix. then 

(a) A-1 is invertible and (A-1)-1=A 

(b) An is invertible and (An)-1=(A-1)n for n = 0, 1, 2,... 

(c) For any nonzero scalar k, the matrix kA is invertible and  

 

 

• Example: Find A3 and A-3 

 

• Polynomial Expressions Involving Matrices 

– If A is a mm square matrix and if p(x)=a0+a1x+...+anxn 

is any polynomial, the we define p(A) = a0I+a1A+...+anAn 

where I is the mm identity matrix. 

Inverses: Rules of Matrix Arithmetic 
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• Properties of the Transpose 

– Theorem: If the sizes of the matrices are such that 
the stated operations can be performed, then 
(a) ((A)T)T = A 

(b) (A+B)T = AT + BT and (A-B)T = AT-BT 

(c) (kA)T = kAT, where k is any scalar 

(d) (AB)T = BTAT 

– The transpose of a product of any number of 
matrices is equal to the product of their transpose in 
the reverse order. 

• Invertibility of a Transpose 

– Theorem: If A is an invertible matrix, then AT is also 
invertible and 

Inverses: Rules of Matrix Arithmetic 
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Elementary Matrices and a Method for Finding A-1 

– Definition: An nn matrix is called an elementary 
matrix if it can be obtained from the nn identity 

matrix In by performing a single elementary row 

operation. 

• Examples: 

 

 

 

– Theorem: If the elementary matrix E results 

from performing a certain row operation on Im 

and if A is an mn matrix, then the product EA 

is the matrix that results when this same row 

operation is performed on A. 

• Example: 
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– Inverse row operations 

 

 

 

 

 

 

– Theorem: Every elementary matrix is invertible, and the inverse is 
also an elementary matrix. 

– Theorem: If A is an nn matrix, then the following statements are 
equivalent, that is, all true or all false. 

(a) A is invertible. 

(b) Ax=0 has only the trivial solution. 

(c) The reduced row-echelon form of A is In. 

(d) A is expressible as a product of elementary matrices. 

 

 
Elementary Matrices and a Method for Finding A-1 

 

Row Operation on I 

That Produces E 

Row Operations on E 

That Reproduces I 

Multiply row i by c0 Multiply row i by 1/c 

Interchange row i and j Interchange row i and j 

Add c times row i to row j Add –c times row i to row j 
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Multiply the second  Multiply the second 
 row by 7   row by 1/7 

Interchange the first  Interchange the first  
 and second rows  and second rows  

 

Add 5 times the second    Add – 5 times the second 
 row to the first     row to the first 
 
 

 

Example: 
 

 



• Row Equivalence 

– Matrices that can be obtained from one another by a finite 

sequence of elementary row operations are said to be row 
equivalence. 

– An nn matrix A is invertible if and only if it is row equivalent to the 

nn identity matrix. 

• A Method for Inverting Matrices 

– To find the inverse of an invertible matrix A, we must find a 

sequence of elementary row operations that reduces A to the 

identity and then perform this same sequence of operations on In to 

obtained A-1. 

– Example: Find the inverse of 

 

 

 

 

 

 

 

Elementary Matrices and a Method for Finding A-1 
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Sample Problem 7:   

 (a)  Determine the inverse for A, where: 

 (b)  Use the inverse determined above to solve 

the system of linear equations: 

 
Example: Find the inverse of  
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Solution: 
 

 
  
          
 
 

     We added –2 times the first row 
      to the second and –1 times the 
      first row to the third 
 
 
      We added 2 times the second row 
      to the third 
 
 
 
      We multiplied the third row by -1 
 
 
 
 
      We added 3 times the third row to 
      the second and –3 times the third 
      row to the first 
 
 
      We added –2 times the second row 
      to the first 
 
 
   
Thus 
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– If an nn matrix is not invertible, then it cannot 

be reduced to In by elementary row operations, 

i.e. the reduced row-echelon form of A has at 

least one row of zeros. 

– We may stop the computations and conclude 

that the given matrix is not invertible when the 

above situation occurs. 

• Example: Show that A is not invertible. 

Elementary Matrices and a Method for Finding A-1 
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Since we have obtained a row of zeros on the left side, A is not invertible.  
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Further Results on Systems of Equations and 
Invertibility 

• A Basic Theorem 

– Theorem: Every system of linear equations has either no 

solutions, exactly one solution, or infinitely many solutions. 

• Solving Linear Systems by Matrix Inversion 

– method besides Gaussian and Gauss-Jordan elimination 

exists 

– Theorem: If A is an invertible nn matrix, then for each n1 

matrix b, the system of equations Ax=b has exactly one 

solution, namely, x=A-1b. 

– Example: Find the solution of the system of linear equations. 

 

 

 

– The method applies only when the system has as many equations as 

unknowns and the coefficient matrix is invertible. 
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Solution: 
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In matrix form the system can be written as Ax=b, where 

It is shown that A is invertible and  
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• Linear Systems with a Common Coefficient Matrix 

– solving a sequence of systems Ax=b1, Ax=b2, Ax=b3,..., Ax=bk, 

each of which has the same coefficient matrix A 

– If A is invertible, then the solutions can be obtained with one 

matrix inversion and k matrix multiplications. 

– A more efficient method is to form the matrix 

 

 By reducing the above augmented matrix to its reduced row-

echelon form we can solve all k systems at once by Gauss-

Jordan elimination. 

• also applies when A is not invertible 

• Example: Solve the systems 

 

Further Results on Systems of Equations and Invertibility 
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Solution:   

Two systems have the same coefficient matrix. If we augment 

this coefficient matrix with the column of constants on the right 

sides of these systems, we obtain 
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• Properties of Invertible Matrices 
– Theorem: Let A be a square matrix. 

1. If B is a square matrix satisfying BA=I, then B=A-1. 

2. If B is a square matrix satisfying AB=I, then B=A-1. 

– Theorem: If A is an nn matrix, then the following are equivalent. 

1. A is invertible. 

2. Ax=0 has only the trivial solution. 

3. The reduced row-echelon form of A is In. 

4. A is expressible as a product of elementary matrices. 

5. Ax=b is consistent for every n1 matrix b. 

6. Ax=b has exactly one solution for every n1 matrix b. 

– Theorem: Let A and B be square matrices of the same size. If AB is 
invertible, then A and B must also be invertible. 

– A Fundamental Problem: Let A be a fixed mn matrix. Find all m1 
matrices b such that the system of equations Ax=b is consistent. 

Further Results on Systems of Equations and Invertibility 



– If A is an invertible matrix, for every mx1 matrix b, 

the linear system Ax=b has the unique solution x=A-

1b. 

– If A is not square or not invertible, the matrix b must 

usually satisfy certain conditions in order for Ax=b 

to be consistent. 

• Example: Find the conditions in order for the 

following systems of equations to be consistent. 

 (a) 

 

 

  

 (b) 

 

Further Results on Systems of Equations and Invertibility 
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Diagonal, Triangular, and Symmetric Matrices 

• Diagonal Matrices 

– A square matrix in which all the entries off the 

main diagonal are zero are called diagonal 
matrices. 

• Example: 

 

 

 

– A general nn diagonal matrix D can be written as 

 

 

 

– A diagonal matrix is invertible if and only if all of 

its diagonal entries are nonzero. 
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Diagonal, Triangular, and Symmetric Matrices 

• Diagonal Matrices 

– A square matrix in which all the entries off the 

main diagonal are zero are called diagonal 
matrices. 

• Example: 

 

 

 

– A general nn diagonal matrix D can be written as 

 

 

 

– A diagonal matrix is invertible if and only if all of 

its diagonal entries are nonzero. 
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– Powers of diagonal matrices 

 

 

 

 

– Example: Find A-1, A5, and A-5 for 

 

– Multiplication of diagonal matrices 

Diagonal, Triangular, and Symmetric Matrices 
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• Triangular Matrices 

– A square matrix in which all the entries above the main diagonal 

are zero is called lower triangular, and a square matrix in which 

all the entries below the main diagonal are zero is called upper 
triangular. A matrix that is either upper triangular or lower 

triangular is called triangular. 

– The diagonal matrices are both upper and lower triangular. 

– A square matrix in row-echelon form is upper triangular. 

– characteristics of triangular matrices 

• A square matrix A=[aij] is upper triangular if and only if the 

ith row starts with at least i-1 zeros. 

• A square matrix A=[aij] is lower triangular if and only if the 

jth column starts with at least j-1 zeros. 

• A square matrix A=[aij] is upper triangular if and only if 

aij=0 for i>j. 

• A square matrix A=[aij] is lower triangular if and only if 

aij=0 for i<j. 
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– Theorem1.7.1: 

(a) The transpose of a lower triangular matrix is upper triangular, and the 

transpose of a upper triangular matrix is lower triangular. 

(b) The product of lower triangular matrices is lower triangular, and the 

product of upper triangular matrices is upper triangular. 

(c) A triangular matrix is invertible if and only if its diagonal entries are all 

nonzero. 

(d) The inverse of an invertible lower triangular matrix is lower triangular, 

and the inverse of an invertible upper triangular matrix is upper 

triangular. 

– Example: Let 

 

 

 

 Find A-1 and AB. 
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• Symmetric Matrices 
– A square matrix is called symmetric if A = AT. 

 

– Examples: 

 

 

– A matrix A=[aij] is symmetric if and only if aij = aji for all i, j. 

– Theorem: If A and B are symmetric matrices with the same size, 

and if k is any scalar, then: 

(a) AT is symmetric. 

(b) A+B and A-B are symmetric. 

(c) kA is symmetric. 

– The product of two symmetric matrices is symmetric if and only if 

the matrices commute(i.e. AB=BA). 
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– In general, a symmetric matrix need not be invertible. 

– Theorem: If A is an invertible symmetric matrix, then A-1 is 

symmetric. 

• Products AAT and ATA 

– Both AAT and ATA are square matrices and are always 

symmetric. 

– Example: 

 

 

 

 

– Theorem: If A is invertible matrix, then AAT and ATA are also 

invertible. 
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