University of Baghdad Semester 1

College of Science for Women Class: 1^{nd}

Department of Mathematics Subject : Linear

Algebra1

Instructor: nagham mossa namh

Lecture

In linear algebra

Systems of Linear Equations and Matrices

References:

linear algebra and its applications . Third edition update .

David c.lay.

2 - elementary linear algebra with applications, ninth edition, Bernard kolman, david hill.

Systems of Linear Equations and Matrices

Introduction

Why matrices?

 Information in science and mathematics is often organized into rows and columns to form regular arrays, called matrices.

What are matrices?

tables of numerical data that arise from physical observations

Why should we need to learn matrices?

- because computers are well suited for manipulating arrays of numerical information
- besides, matrices are mathematical objects in their own right, and there is a rich and important theory associated with them that has a wide variety of applications

Linear Equations

 Any straight line in the xy-plane can be represented algebraically by the equation of the form

$$a_1x + a_2y = b$$

an equation of this form is called a linear equation in the variables of x and y.

generalization: linear equation in n variables

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

- the variables in a linear equation are sometimes called unknowns
- examples of linear equations

$$x + 3y = 7$$
, $y = (1/2)x + 3z + 1$, and $x_1 - 2x_2 - 3x_3 + x_4 = 7$

examples of non-linear equations

$$x + 3\sqrt{y} = 5,2x + 2y - z + xz = 4$$
, and $y = \sin x$

Solution of a Linear Equation

- A solution of a linear equation $a_1x_1+a_2x_2+...+a_nx_n=b$ is a sequence of n numbers $s_1, s_2,...,s_n$ such that the equation is satisfied when we substitute $x_1=s_1, x_2=s_2,...,x_n=s_n$.

Solution Set

- The set of solutions of the equation is called its solution set, or general solution.
- Example: Find the solution set of (a) 4x-2y=1, and (b) $x_1-4x_2+7x_3=5$.

Linear Systems

- A finite set of linear equations in the variables $x_1, x_2,...,x_n$ is called a system of linear equations or a linear system.
- A sequence of numbers $s_1, s_2,...,s_n$ is a solution of the system if $x_1=s_1, x_2=s_2,...,x_n=s_n$ is a solution of every equation in the system.

- Not all linear systems have solutions.
- A linear system that has no solutions is said to be inconsistent; if there is at least one solution of the system, it is called consistent.
- Every system of linear equations has either no solutions, exactly one solution, or infinitely many solutions.
- An arbitrary system of *m* linear equations in *n* unknown can be written as

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

 The double subscripting of the unknown is a useful device that is used to specify the location of the coefficients in the system.

- Augmented Matrices
 - A system of m linear equations in n unknown can be abbreviated by writing only the rectangle array of numbers:

$$egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \ dots & dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

This is called the augmented matrix of the system.

- The basic method for solving a system of linear equations is to replace the given system by a new system that has the same solution set but which is easier to solve.
 - 1. Multiply an equation through by a nonlinear constant
 - 2. Interchange two equations.
 - 3. Add a multiple of one equation to another.

- Elementary Row Operations
 - Since the rows of an augmented matrix correspond to the equations in the associated system, the three operations above correspond to the following *elementary row* operations on the rows of the augmented matrix:
 - 1. Multiply a row through by a nonzero constant.
 - 2. Interchange two rows.
 - 3. Add a multiple of one row to another row.
 - Example: Using elementary row operations to solve the linear system x + y + 2z = 9

$$2x+4y-3z=1$$

$$3x + 6y - 5z = 0$$

Echelon Forms

- A matrix with the following properties is in reduced rowechelon form:
 - 1. If a row does not consist entirely of zeros, then the first nonzero number in the row is 1. We call this a *leading 1*.
 - 2. If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix.
 - 3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row.
 - 4. Each column that contains a leading 1 has zeros everywhere else.
- A matrix that has the first three properties is said to be in row-echelon form.
- Example 1

- A matrix in row-echelon form has zeros below each leading 1, whereas a matrix in reduced row-echelon form has zeros below and above each leading 1.
- The solution of a linear system may be easily obtained by transforming its augmented matrix to reduced rowechelon form.
- Example: Solutions of Four Linear Systems

$$(a) \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{bmatrix} \qquad (b) \begin{bmatrix} 1 & 0 & 0 & 4 & -1 \\ 0 & 1 & 0 & 2 & 6 \\ 0 & 0 & 1 & 3 & 2 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 6 & 0 & 0 & 4 & -2 \\ 0 & 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad (d) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

leading variables vs. free variables

Elimination Methods

- to reduce any matrix to its reduced row-echelon form
 - 1. Locate the leftmost column that does not consist entirely of zeros.
 - 2. Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in Step 1.
 - 3. If the entry that is now at the top of the column found in Step 1 is a, multiply the first row by 1/a in order to produce a leading 1.
 - 4. Add suitable multiples of the top row to the rows below so that all entries below the leading 1 become zeros.
 - 5. Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix that remains. Continue in this way until the *entire* matrix is in row-echelon form.
 - 6. Beginning with the last nonzero row and working upward, add suitable multiples of each row to the rows above to introduce zeros above the leading 1's.
- The first five steps produce a row-echelon form and is called Gaussian elimination. All six steps produce a reduced row-echelon form and is called Gauss-Jordan elimination.

Example: Gauss-Jordan Elimination
 Solve by Gauss-Jordan elimination.

$$x_1 + 3x_2 - 2x_3 + 2x_5 = 0$$

 $2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = -1$
 $5x_3 + 10x_4 + 4x_5 + 15x_6 = 5$
 $2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 6$

- Back-Substitution
 - to solve a linear system from its row-echelon form rather than reduced row-echelon form
 - 1. Solve the equations for the leading variables.
 - 2. Beginning with the bottom equation and working upward, successively substitute each equation into all the equations above it.
 - 3. Assign arbitrary values to the free variables, if any.
 - **Such arbitrary values are often called** *parameters*.

-Example: Gaussian Elimination Solve

$$x + y + 2z = 9$$

 $2x + 4y - 3z = 1$
 $3x + 6y - 5z = 0$

by Gaussian elimination and back-substitution.

The augmented matrix is

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{bmatrix}$$
 Row-echelon

The system corresponding to matrix yields

$$x + y + 2z = 9$$

$$y - \frac{7}{2}z = -\frac{17}{2}$$

$$z = 3$$

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Solving the leading variables

$$x = 9 - y - 2z z = 3-y$$

$$y = -\frac{17}{2} + \frac{7}{2}z y = 2$$

$$z = 3$$

Homogeneous Linear Systems

- A system of linear equations is said to be homogeneous if the constant terms are all zero.
- Every homogeneous system is consistent, since all system have $x_1=0$, $x_2=0$,..., $x_n=0$ as a solution. This solution is called the *trivial* solution; if there are other solutions, they are called *nontrivial solutions*.
- A homogeneous system has either only the trivial solution, or has infinitely many solutions.

Example: Gauss-Jordan Elimination Solve the following homogeneous system of linear equations by using Gauss-Jordan Elimination.

$$2x_{1} + 2x_{2} - x_{3} + x_{5} = 0$$

$$-x_{1} - x_{2} + 2x_{3} - 3x_{4} + x_{5} = 0$$

$$x_{1} + x_{2} - 2x_{3} - x_{5} = 0$$

$$x_{3} + x_{4} + x_{5} = 0$$

The augmented matrix for the system is

$$\begin{bmatrix} 2 & 2 & -1 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 1 & 0 \\ 1 & 1 & -2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Reducing this matrix to reduced roeechelon form, we obtain

1	1	O	O	1	\mathbf{O}
O	Ο	1	Ο	1	О
O	O	O	1	O	О
O	Ο	O 1 O O	Ο	O	\mathbf{O}

The corresponding system of equation is

$$x_1 + x_2 + x_5 = 0$$
 $x_3 + x_5 = 0$
 $x_4 = 0$

Solving for the leading variables yields

$$x_1 = - x_2 - x_5$$

$$x_3 = - x_5$$

$$x_4 = 0$$

Thus the general solution is

$$x_1 = -s - t$$

 $x_2 = s$
 $x_3 = -t, x_4 = 0, x_5 = t$

Note that the trivial solution is obtained when s=t=0

- Matrix Notation and Terminology
 - A matrix is a rectangular array of numbers. The numbers in the array are called the entries in the matrix.
 - Examples:

$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} [4]$$

- The size of a matrix is described in terms of the number of rows and columns it contains.
 - Example: The sizes of above matrices are 3×2, 1×4, 3×3, 2×1, and 1×1, respectively.
- A matrix with only one column is called a column matrix(or a column vector), and a matrix with only one row is called a row matrix (or a row vector).
- When discussing matrices, it is common to refer to numerical quantities as scalars.

- We often use capital letters to denote matrices and lowercase letters to denote numerical quantities.
- The entries that occurs in row i and column j of a matrix A will be denoted by a_{ij} or $(A)_{ij}$.
 - A general m×n matrix might be written as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- or $[a_{ij}]_{m\times n}$ or $[a_{ij}]$.
- Row and column matrices are denoted by boldface lowercase letters.

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

- A matrix A with n rows and n columns is called a square matrix of order n, and entries a_{11} , a_{22} ,..., a_{nn} are said to be on the main diagonal of A.

Operations on Matrices

- Definition: Two matrices are defined to be equal if they have the same size and their corresponding entries are equal.
- Definition: If A and B are matrices of the same size, then the sum A+B is the matrix obtained by adding the entries of B to the corresponding entries of A, and the difference A-B is the matrix obtained by subtracting the entries of B from the corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

$$(A+B)_{ij} = (A)_{ij} + (B)_{ij} = a_{ij} + b_{ij}$$
 and $(A-B)_{ij} = (A)_{ij} - (B)_{ij} = a_{ij} - b_{ij}$

- Definition: If A is any matrix and c is any scalar, then the product cA is the matrix obtained by multiplying each entry of the matrix A by c. The matrix cA is said to be a scalar multiple of A.
- If A_1 , A_2 ,..., A_n are matrices of the same size and c_1 , c_2 ,..., c_n are scalars, then an expression of the form

$$c_1A_1 + c_2A_2 + \dots + c_nA_n$$

is called a linear combination of A_1 , A_2 ,..., A_n with coefficients c_1 , c_2 ,..., c_n .

Definition: If A is an mxr matrix and B is an rxn matrix, then the product AB is the mxn matrix whose entries are determined as follows. To find the entry in row i and column j of AB, single out row i from the matrix A and column j from the matrix B, Multiply the corresponding entries from the row and column together and then add up the resulting products.

- Example: Multiplying Matrices

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$$

- The number of columns of the first factor A must be the same as the number of rows of the second factor B in order to form the product AB.
 - Example: A: 3x4, B: 4x7, C: 7x3, then AB, BC, CA are defined, AC, CB, BA are undefined.

Partitioned Matrices

 A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal and vertical rules between selected rows and columns.

- Matrix Multiplication by Columns and by Rows
 - to find a particular row or column of a matrix product AB
 - Ith column matrix of AB = A[Ith column matrix of B]
 - Ith row matrix of AB = [Ith row matrix of A]B
 - Example: find the secoand column matrix of AB

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$$

- If a_1 , a_2 ,..., a_m denote the row matrices of A and b_1 , b_2 ,..., b_n denote the column matrices of B, then $\begin{bmatrix} a_1 \end{bmatrix} \begin{bmatrix} a_1 B \end{bmatrix}$

denote the column matrices of
$$B$$
, then
$$AB = A[\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n] = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \cdots \quad A\mathbf{b}_n], \quad AB = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} B = \begin{bmatrix} \mathbf{a}_1 B \\ \mathbf{a}_2 B \\ \vdots \\ \mathbf{a}_m B \end{bmatrix}$$

Matrix Products as Linear Combinations

Suppose that

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Then

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

- The product Ax of a matrix A with a column matrix x is a linear combination of the column matrices of A with the coefficients coming from the matrix x.

- The product yA of a 1×m matrix y with an m×n matrix A is a linear combination of the row matrices of A with scalar coefficients coming from y.
 - Example: Find Ax and yA.

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 1 & -9 & -3 \end{bmatrix}$$

- The *jth* column matrix of a product *AB* is a linear combination of the column matrices of *A* with the coefficients coming from the *jth* column of *B*.
 - Example:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}, B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$$

- Matrix Form of a Linear System
 - Consider any system of m linear equations in n unknowns.

We can replace the m equations in the system by the single matrix equation

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$Ax=b$$

- A is called the coefficient matrix.
- The augmented matrix of this system is

$$[A \mid \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

- Transpose of a Matrix
 - Definition: If A is any m×n matrix, then the transpose of A, denoted by A^T, is defined to be the n×m matrix that results from interchanging the rows and columns of A.
 - Example: Find the transposes of the following matrices.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}, B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 5 & 6 \end{bmatrix}, C = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}, D = \begin{bmatrix} 4 \end{bmatrix}$$

- $-(A^{7})_{ij}=(A)_{ji}$
- Definition: If A is a square matrix, then the trace of A, denoted by tr(A), is defined to be the sum of the entries on the main diagonal of A. The trace of A is undefined if A is not a square matrix.
 - Example: Find the traces of the following matrices.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$

$$Tr(A) = a_{11} + a_{22} + a_{33}$$

- **Properties of Matrix Operations**
 - Commutative law for scalars is not necessarily true.
 - 1. when AB is defined by BA is undefined
 - 2. when AB and BA have different sizes
 - 3. It is still possible that AB is not equal to BA even when 1 and 2 holds.
 - **Example:**

$$A = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

- (a) A+B=B+A

(Commutative law for addition)

(b) A+(B+C)=(A+B)+C

(Associative law for addition)

(c) A(BC)=(AB)C

(Associative law for multiplication)

(d) A(B+C)=AB+AC

(Left distributive law)

(e) (B+C)A=BA+CA

(Right distributive law)

(f) A(B-C)=AB-AC

(j) (a+b)C=aC+bC

(g) (B-C)A=BA-CA

(k) (a-b)C=aC-bC

(h) a(B+C)=aB+aC

(I) a(bC)=(ab)C

(i) a(B-C)=aB-aC

(m) a(BC)=(aB)C=B(aC)

Zero Matrices

- A matrix, all of whose entries are zero, is called a zero matrix.
- A zero matrix is denoted by 0 or $O_{m \times n}$. A zero matrix with one column is denoted by 0.
- The cancellation law does not necessarily hold in matrix operation.
- Valid rules in matrix arithmetic for zero matrix.

(a)
$$A+0 = 0+A = A$$

$$(b) A-A=0$$

$$(c) \ 0-A = -A$$

(d)
$$A0 = 0$$
; $0A = 0$

- Identity Matrices
 - square matrices with 1's on the main diagonal and 0's off the main diagonal are called identity matrices and is denoted by I

Properties of Inverses

- Theorem: If B and C are both inverses of the matrix A,
 then B=C.
- If A is invertible, then its inverse will be denoted by A^{-1} .
- $-AA^{-1}=I$ and $A^{-1}A=I$
- Theorem: The matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if $ad-bc\neq 0$, in which case the inverse is given by the formula

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} \frac{d}{ad - bc} & -\frac{b}{ad - bc} \\ -\frac{c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$$

- Theorem: If A and B are invertible matrices of the same size, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
 - Generalization: The product of any number of invertible matrices is invertible, and the inverse of the product is the product of the inverse in the reverse order.
 - Example: Inverse of a product

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}$$

- Powers of a Matrix
 - Definition: If A is a square matrix, then we define the nonnegative integer powers of A to be

$$A^0 = I$$
, $A^n = \underbrace{AA \cdots A}_{n \text{ factors}} \quad (n > 0)$

Moreover, if A is invertible, then we define the nonnegative integer powers to be $A^{-n} = \left(A^{-1}\right)^n = \underbrace{A^{-1}A^{-1}\cdots A^{-1}}_{}$

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 30 \\ 15 & 41 \end{bmatrix}$$

$$A^{-3} = (A^{-1})^3 = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 41 & -30 \\ -15 & 11 \end{bmatrix}$$

Theorem: (Laws of Exponents) If A is a square matrix and r and s are integers, then

$$A^r A^s = A^{r+s}$$
, $(A^r)^s = A^{rs}$
Theorem: If A is an invertible matrix. then

- - (a) A^{-1} is invertible and $(A^{-1})^{-1}=A$
 - (b) A^n is invertible and $(A^n)^{-1}=(A^{-1})^n$ for n=0, 1, 2,...
 - (c) For any nonzero scalar k, the matrix kA is invertible and

$$(kA)^{-1} = \frac{1}{k}A^{-1}$$
• Example: Find A^3 and A^{-3}
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

- **Polynomial Expressions Involving Matrices**
 - If A is a $m \times m$ square matrix and if $p(x) = a_0 + a_1 x + ... + a_n x^n$ is any polynomial, the we define $p(A) = a_0 I + a_1 A + ... + a_n A^n$ where I is the $m \times m$ identity matrix.

Properties of the Transpose

- Theorem: If the sizes of the matrices are such that the stated operations can be performed, then
 - (a) $((A)^T)^T = A$
 - (b) $(A+B)^T = A^T + B^T$ and $(A-B)^T = A^T B^T$
 - (c) $(kA)^T = kA^T$, where k is any scalar
 - (d) $(AB)^T = B^T A^T$
- The transpose of a product of any number of matrices is equal to the product of their transpose in the reverse order.

Invertibility of a Transpose

Theorem: If A is an invertible matrix, then A^T is also invertible and

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}$$

Elementary Matrices and a Method for Finding A-1

- Definition: An $n \times n$ matrix is called an elementary matrix if it can be obtained from the $n \times n$ identity matrix I_n by performing a single elementary row operation.
 - Examples:

$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Theorem: If the elementary matrix E results from performing a certain row operation on I_m and if A is an $m \times n$ matrix, then the product EA is the matrix that results when this same row operation is performed on A.
 - Example: $A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 3 & 6 \\ 1 & 4 & 4 & 0 \end{bmatrix}, E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$

Elementary Matrices and a Method for Finding A-1

Inverse row operations

Row Operation on I That Produces E	Row Operations on E That Reproduces I		
Multiply row <i>i</i> by <i>c</i> ≠0	Multiply row <i>i</i> by 1/c		
Interchange row i and j	Interchange row <i>i</i> and <i>j</i>		
Add c times row i to row j	Add $-c$ times row i to row j		

- Theorem: Every elementary matrix is invertible, and the inverse is also an elementary matrix.
- Theorem: If A is an n×n matrix, then the following statements are equivalent, that is, all true or all false.
 - (a) A is invertible.
 - (b) Ax=0 has only the trivial solution.
 - (c) The reduced row-echelon form of A is I_n .
 - (d) A is expressible as a product of elementary matrices.

Example:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Multiply the second row by 7

Multiply the second row by $^{1}/_{7}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Interchange the first and second rows

Interchange the first and second rows

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \qquad \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} \rightarrow \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Add 5 times the second row to the first

Add – 5 times the second row to the first

Elementary Matrices and a Method for Finding A-1

Row Equivalence

- Matrices that can be obtained from one another by a finite sequence of elementary row operations are said to be row equivalence.
- An n×n matrix A is invertible if and only if it is row equivalent to the n×n identity matrix.
- A Method for Inverting Matrices
 - To find the inverse of an invertible matrix A, we must find a sequence of elementary row operations that reduces A to the identity and then perform this same sequence of operations on I_n to obtained A^{-1} .
 - Example: Find the inverse of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Sample Problem 7:

- (a) Determine the inverse for A, where:
- (b) Use the inverse determined above to solve the system of linear equations:

Example: Find the inverse of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & | & -14 & 6 & 3 \\ 0 & 1 & 0 & | & 13 & -5 & -3 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & -40 & 16 & 9 \\ 0 & 1 & 0 & | & 13 & -5 & -3 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{bmatrix}$$

We added -2 times the first row to the second and -1 times the first row to the third

We added 2 times the second row to the third

We multiplied the third row by -1

We added 3 times the third row to the second and -3 times the third row to the first

We added –2 times the second row to the first

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

Thus

Elementary Matrices and a Method for Finding A-1

- If an $n \times n$ matrix is not invertible, then it cannot be reduced to I_n by elementary row operations, i.e. the reduced row-echelon form of A has at least one row of zeros.
- We may stop the computations and conclude that the given matrix is not invertible when the above situation occurs.
 - Example: Show that A is not invertible.

$$A = \begin{bmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 6 & 4 & 1 & 0 & 0 \\ 2 & 4 & -1 & 0 & 1 & 0 \\ -1 & 2 & 5 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_2} \begin{bmatrix} 1 & 6 & 4 & 1 & 0 & 0 \\ 0 & -8 & -9 & -2 & 1 & 0 \\ 0 & 8 & 9 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{bmatrix} 1 & 6 & 4 & 1 & 0 & 0 \\ 0 & -8 & -9 & -2 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \end{bmatrix}$$

Since we have obtained a row of zeros on the left side, A is not invertible.

A Basic Theorem

 Theorem: Every system of linear equations has either no solutions, exactly one solution, or infinitely many solutions.

Solving Linear Systems by Matrix Inversion

- method besides Gaussian and Gauss-Jordan elimination exists
- Theorem: If A is an invertible $n \times n$ matrix, then for each $n \times 1$ matrix b, the system of equations Ax = b has exactly one solution, namely, $x = A^{-1}b$.
- Example: Find the solution of the system of linear equations.

$$x_1 + 2x_2 + 3x_3 = 5$$

 $2x_1 + 5x_2 + 3x_3 = 3$
 $x_1 + 8x_3 = 17$

 The method applies only when the system has as many equations as unknowns and the coefficient matrix is invertible.

Solution:

In matrix form the system can be written as Ax=b, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad b = \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix}$$

It is shown that A is invertible and

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

By theorem the solution of a system is

$$x = A^{-1}b = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \quad \text{or } x_1 = 1, x_2 = -1, x_3 = 2$$

- Linear Systems with a Common Coefficient Matrix
 - solving a sequence of systems $Ax=b_1$, $Ax=b_2$, $Ax=b_3$,..., $Ax=b_k$, each of which has the same coefficient matrix A
 - If A is invertible, then the solutions can be obtained with one matrix inversion and k matrix multiplications.
 - A more efficient method is to form the matrix

$$\left[A \,|\, \mathbf{b}_1 \,|\, \mathbf{b}_2 \,|\, \cdots \,|\, \mathbf{b}_k \,\right]$$

By reducing the above augmented matrix to its reduced rowechelon form we can solve all *k* systems at once by Gauss-Jordan elimination.

- also applies when A is not invertible
- Example: Solve the systems

$$x_1 + 2x_2 + 3x_3 = 4$$
 $x_1 + 2x_2 + 3x_3 = 1$
 $(a)2x_1 + 5x_2 + 3x_3 = 5$ $(b)2x_1 + 5x_2 + 3x_3 = 6$
 $x_1 + 8x_3 = 9$ $x_1 + 8x_3 = -6$

Solution:

Two systems have the same coefficient matrix. If we augment this coefficient matrix with the column of constants on the right sides of these systems, we obtain

$$\begin{bmatrix} 1 & 2 & 3 & | 4 & | 1 \\ 2 & 5 & 3 & | 5 & | 6 \\ 1 & 0 & 8 & | 9 & | -6 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & | 1 & | 2 \\ 0 & 1 & 0 & | 0 & | 1 \\ 0 & 0 & 1 & | 1 & | -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | 1 & | 2 \\ 0 & 1 & 0 & | 0 & | 1 \\ 0 & 0 & 1 & | 1 & | -1 \end{bmatrix}$$

(a)
$$x_1 = 1, x_2 = 0, x_3 = 1$$
 (b) $x_1 = 2, x_2 = 1, x_3 = -1$

Properties of Invertible Matrices

- Theorem: Let A be a square matrix.
 - 1. If B is a square matrix satisfying BA=I, then $B=A^{-1}$.
 - 2. If B is a square matrix satisfying AB=I, then $B=A^{-1}$.
- Theorem: If A is an $n \times n$ matrix, then the following are equivalent.
 - 1. A is invertible.
 - 2. Ax=0 has only the trivial solution.
 - 3. The reduced row-echelon form of A is I_n .
 - 4. A is expressible as a product of elementary matrices.
 - 5. Ax=b is consistent for every $n \times 1$ matrix b.
 - 6. Ax=b has exactly one solution for every $n \times 1$ matrix b.
- Theorem: Let A and B be square matrices of the same size. If AB is invertible, then A and B must also be invertible.
- A Fundamental Problem: Let A be a fixed m×n matrix. Find all m×1 matrices b such that the system of equations Ax=b is consistent.

- If A is an invertible matrix, for every mx1 matrix b, the linear system Ax=b has the unique solution $x=A^{-1}b$.
- If A is not square or not invertible, the matrix b must usually satisfy certain conditions in order for Ax=b to be consistent.
 - Example: Find the conditions in order for the following systems of equations to be consistent.

(a)
$$x_1 + x_2 + 2x_3 = b_1$$

 $x_1 + x_3 = b_2$
 $2x_1 + x_2 + 3x_3 = b_3$
(b) $x_1 + 2x_2 + 3x_3 = b_1$
 $x_1 + 5x_2 + 3x_3 = b_2$
 $x_1 + 5x_2 + 3x_3 = b_3$

- Diagonal Matrices
 - A square matrix in which all the entries off the main diagonal are zero are called diagonal matrices.
 - Example:

$$\begin{bmatrix} 2 & 0 \\ 0 & -5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

- A general $n \times n$ diagonal matrix D can be written as

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix} \qquad D^{-1} = \begin{bmatrix} 1/d_1 & 0 & \cdots & 0 \\ 0 & 1/d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1/d_n \end{bmatrix}$$

 A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero.

- Diagonal Matrices
 - A square matrix in which all the entries off the main diagonal are zero are called diagonal matrices.
 - Example:

$$\begin{bmatrix} 2 & 0 \\ 0 & -5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

- A general $n \times n$ diagonal matrix D can be written as

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix} \qquad D^{-1} = \begin{bmatrix} 1/d_1 & 0 & \cdots & 0 \\ 0 & 1/d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1/d_n \end{bmatrix}$$

 A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero.

Powers of diagonal matrices

$$D^k = egin{bmatrix} d_1^k & 0 & \cdots & 0 \ 0 & d_2^k & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & d_n^k \ \end{pmatrix}$$

Multiplication of diagonal matrices

$$\begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} d_1 a_{11} & d_1 a_{12} & d_1 a_{13} & d_1 a_{14} \\ d_2 a_{21} & d_2 a_{22} & d_2 a_{23} & d_2 a_{24} \\ d_3 a_{31} & d_3 a_{32} & d_3 a_{33} & d_3 a_{34} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} = \begin{bmatrix} d_1 a_{11} & d_2 a_{12} & d_3 a_{13} \\ d_1 a_{21} & d_2 a_{22} & d_3 a_{23} \\ d_1 a_{31} & d_2 a_{32} & d_3 a_{33} \\ d_1 a_{41} & d_2 a_{42} & d_3 a_{43} \end{bmatrix}$$

Triangular Matrices

- A square matrix in which all the entries above the main diagonal are zero is called lower triangular, and a square matrix in which all the entries below the main diagonal are zero is called upper triangular. A matrix that is either upper triangular or lower triangular is called triangular.
- The diagonal matrices are both upper and lower triangular.
- A square matrix in row-echelon form is upper triangular.
- characteristics of triangular matrices
 - A square matrix $A=[a_{ij}]$ is upper triangular if and only if the *i*th row starts with at least *i*-1 zeros.
 - A square matrix $A=[a_{ij}]$ is lower triangular if and only if the *j*th column starts with at least *j*-1 zeros.
 - A square matrix $A=[a_{ij}]$ is upper triangular if and only if $a_{ij}=0$ for i>j.
 - A square matrix $A=[a_{ij}]$ is lower triangular if and only if $a_{ij}=0$ for i < j.

- Theorem 1.7.1:
- (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of a upper triangular matrix is lower triangular.
- (b) The product of lower triangular matrices is lower triangular, and the product of upper triangular matrices is upper triangular.
- (c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.
- (d) The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper triangular.
- Example: Let

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & -2 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

Find A^{-1} and AB.

$$AB = \begin{bmatrix} 3 & -2 & -2 \\ 0 & 0 & 2 \\ 0 & 0 & 5 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 1 & \frac{-3}{2} & \frac{7}{5} \\ 0 & \frac{1}{2} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$$

Symmetric Matrices

- A square matrix is called *symmetric* if $A = A^T$.
- Examples:

$$\begin{bmatrix} 7 & -3 \\ -3 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 4 & 5 \\ 4 & -3 & 0 \\ 5 & 0 & 7 \end{bmatrix}, \begin{bmatrix} d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ 0 & 0 & d_3 & 0 \\ 0 & 0 & 0 & d_4 \end{bmatrix}$$

- A matrix $A=[a_{ij}]$ is symmetric if and only if $a_{ij}=a_{ji}$ for all i,j.
- Theorem: If A and B are symmetric matrices with the same size, and if k is any scalar, then:
 - (a) A^T is symmetric.
 - (b) A+B and A-B are symmetric.
 - (c) kA is symmetric.
- The product of two symmetric matrices is symmetric if and only if the matrices commute(i.e. AB=BA).

- In general, a symmetric matrix need not be invertible.
- Theorem: If A is an invertible symmetric matrix, then A^{-1} is symmetric.
- Products AA^T and A^TA
 - Both AA^T and A^TA are square matrices and are always symmetric.

- **Example:**
$$A = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \end{bmatrix}$$
 $A^{T}A = \begin{bmatrix} 1 & 3 \\ -2 & 0 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & -5 \end{bmatrix} = \begin{bmatrix} 10 & -2 & -11 \\ -2 & 4 & -8 \\ -11 & -8 & 41 \end{bmatrix}$

$$A^{T}A = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & -5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -2 & 0 \\ 4 & -5 \end{bmatrix} = \begin{bmatrix} 21 & -17 \\ -17 & 34 \end{bmatrix}$$

- Theorem: If A is invertible matrix, then AA^T and A^TA are also invertible.